Thursday, 15 August 2013

r - Automatically compare nested models from mice's glm.mids -



r - Automatically compare nested models from mice's glm.mids -

i have multiply-imputed model r's mice bundle in there lots of factor variables. example:

library(mice) library(hmisc) # turn variables factors false = nhanes fake$age = as.factor(nhanes$age) fake$bmi = cut2(nhanes$bmi, g=3) fake$chl = cut2(nhanes$chl, g=3) head(fake) age bmi hyp chl 1 1 <na> na <na> 2 2 [20.4,25.5) 1 [187,206) 3 1 <na> 1 [187,206) 4 3 <na> na <na> 5 1 [20.4,25.5) 1 [113,187) 6 3 <na> na [113,187) imput = mice(nhanes) # big model fit1 = glm.mids((hyp==2) ~ age + bmi + chl, data=imput, family = binomial)

i want test significance of each entire factor variable in model (not indicator variables each level) testing total model against each possible nested model drops 1 variable @ time. manually, can do:

# little model (no chl) fit2 = glm.mids((hyp==2) ~ age + bmi, data=imput, family = binomial) # extract p-value pool.compare pool.compare(fit1, fit2)$pvalue

how can automatically factor variables in model? helpful function drop1 suggested me a previous question -- want except mice case.

possibly helpful note: annoying feature of pool.compare appears want "extra" variables in larger model placed after ones shared smaller model.

you can utilize loop iterate through different combinations of predictors, after arranging them in order required pool.compare.

so using fake info above - tweaked number of categories

library(mice) library(hmisc) # turn variables factors # turn variables factors false <- nhanes fake$age <- as.factor(nhanes$age) fake$bmi <- cut2(nhanes$bmi, g=2) fake$chl <- cut2(nhanes$chl, g=2) # impute imput <- mice(fake, seed=1) # create models # - reduced models 1 variable removed # - total models variables @ end of look vars <- c("age", "bmi", "chl") reddish <- combn(vars, length(vars)-1 , simplify=false) diffs <- lapply(red, function(i) setdiff(vars, i) ) (full <- lapply(1:length(red), function(i) paste(c(red[[i]], diffs[[i]]), collapse=" + "))) #[[1]] #[1] "age + bmi + chl" #[[2]] #[1] "age + chl + bmi" #[[3]] #[1] "bmi + chl + age" (red <- combn(vars, length(vars)-1 , fun=paste, collapse=" + ")) #[1] "age + bmi" "age + chl" "bmi + chl"

the models in right order pass glm call. i've replaced glm.mids method has been replaced with.mids - see ?glm.mids

out <- vector("list", length(red)) for( in 1:length(red)) { redmod <- with(imput, glm(formula(paste("(hyp==2) ~ ", red[[i]])), family = binomial)) fullmod <- with(imput, glm(formula(paste("(hyp==2) ~ ", full[[i]])), family = binomial)) out[[i]] <- list(predictors = diffs[[i]], pval = c(pool.compare(fullmod, redmod)$pvalue)) } do.call(rbind.data.frame, out) # predictors pval #2 chl 0.9976629 #21 bmi 0.9985028 #3 age 0.9815831 # check manually leaving out chl mod1 <- with(imput, glm((hyp==2) ~ age + bmi + chl , family = binomial)) mod2 <- with(imput, glm((hyp==2) ~ age + bmi , family = binomial)) pool.compare(mod1, mod2)$pvalue # [,1] #[1,] 0.9976629

you lot of warnings using dataset

edit

you wrap in function

impglmdrop1 <- function(vars, outcome, data=imput, family="binomial") { reddish <- combn(vars, length(vars)-1 , simplify=false) diffs <- lapply(red, function(i) setdiff(vars, i)) total <- lapply(1:length(red), function(i) paste(c(red[[i]], diffs[[i]]), collapse=" + ")) reddish <- combn(vars, length(vars)-1 , fun=paste, collapse=" + ") out <- vector("list", length(red)) for( in 1:length(red)) { redmod <- with(data, glm(formula(paste(outcome, red[[i]], sep="~")), family = family)) fullmod <- with(data, glm(formula(paste(outcome, full[[i]], sep="~")), family = family)) out[[i]] <- list(predictors = diffs[[i]], pval = c(pool.compare(fullmod, redmod)$pvalue) ) } do.call(rbind.data.frame, out) } # run impglmdrop1(c("age", "bmi", "chl"), "(hyp==2)")

r anova categorical-data r-mice

No comments:

Post a Comment